Authors |
Spiridonov Aleksandr Olegovich, Postgraduate student, Kazan (Volga region) Federal University (18 Kremlevskaya street, Kazan, Russia), sasha_ens@mail.ru
Karchevskiy Evgeniy Mikhaylovich, Doctor of physical and mathematical sciences, professor, sub-department of applied mathematics, Kazan (Volga region) Federal University (18 Kremlevskaya street, Kazan, Russia), sasha_ens@mail.ru
Nosich Aleksandr Iosifovich, Doctor of physical and mathematical sciences, professor, laboratory of micro and nanooptics, Institute of Radio Physics and Electronics of the National Academy of Sciences of Ukraine (12 Akademika Proskury street, Kharkov, Ukraine), sasha_ens@mail.ru
|
References |
1. Muller C. Grundproblems der Mathematischen Theorie Elektromagnetis-cher Schwin-gungen [Grundproblems the Mathematical theory Elektromagnetis-cher vibrations]. Ber-lin: Springer, 1957, 345 p.
2. Smotrova E. I., Tsvirkun V., Gozhyk I., Lafargue C., Ulysse C., Lebental M.,
Nosich A. I. J. Opt. Soc. Am. B. 2013, vol. 30, no. 6, pp. 1732–1742.
3. Eyges L., Gianino P., Wintersteiner P. J. Opt. Soc. Am. 1979, vol. 69, no. 9, pp. 1226–1235.
4. Wang L., Cox J. A., Friedman A. J. Opt. Soc. Am. A. 1998, vol. 15, no. 1, pp. 92–100.
5. Snayder A., Lav Dzh. Teoriya opticheskikh volnovodov [Theory of optical waveguides]. Moscow: Radio i svyaz', 1987, 656 p.
6. Karchevskii E., Nosich A. Proceedings of International Conference on Mathematical Methods in Electromagnetic Theory. Dnipropetrovsk, Ukraine, 2014, pp. 39–45.
7. Kartchevski E. M., Nosich A. I., Hanson G. W. SIAM J. Appl. Math. 2005, vol. 65,
no. 6, pp. 2033–2048.
8. Dautov R. Z., Karchevskiy E. M. Metod integral'nykh uravneniy i tochnye nelokal'nye granichnye usloviya v teorii dielektricheskikh volnovodov [Method of integral equations and precise nonlocal boundary conditions in the theory of dielectric waveguides]. Kazan: Kazan. gos. un-t, 2009, 271 p.
9. Bitsadze A. V. Nekotorye klassy uravneniy v chastnykh proizvodnykh [Some equation classes in partial derivatives]. Moscow: Nauka, 1981, 448 p.
10. Kolton D., Kress R. Metody integral'nykh uravneniy v teorii rasseyaniya [Methods of integral equations in the scattering theory]. Moscow: Mir, 1987, 312 p.
11. Shestopalov Yu. V., Smirnov Yu. G., Chernokozhin E. V. Logarithmic integral equati-ons in electromagnetics. VSP, 2000, 117 p.
12. Nikiforov A. F., Uvarov V. B. Osnovy teorii spetsial'nykh funktsiy [Basic theory of spe-cial functions]. Moscow: Nauka, 1974, 303 p.
13. Il'inskiy A. S., Shestopalov Yu. V. Primenenie metodov spektral'noy teorii v zadachakh rasprostraneniya voln [Application of spectral theory methods in the wave propagation problems]. Moscow: Izd-vo MGU,1989,184 p.
14. Tikhonov A. N., Samarskiy A. A. Uravneniya matematicheskoy fiziki [Equations of ma-thematical physics]. Moscow: Izd-vo MGU, 1999, 799 p.
15. Kress R. Linear integral equations. New York: Springer-Verlag, 1999, 365 p.
16. Kato T. Teoriya vozmushcheniy lineynykh operatorov [Theory of linear operators‘ dis-turbance]. Moscow: Mir, 1972, 740 p.
17. Gokhberg I. Ts., Kreyn M. G. Uspekhi matematicheskikh nauk [Progress of mathematical sciences]. 1957, vol. 12, no. 2, pp. 44–118.
18. Steinberg S. Arch. Rat. Mech. Anal. 1968, vol. 31, no. 5, pp. 372–379.
|