Article 2115

Title of the article

MULLER BOUNDARY INTEGRAL EQUATIONS IN THE SPECTRAL THEORY OF DIELECTRIC WAVEGUIDES  

Authors

Spiridonov Aleksandr Olegovich, Postgraduate student, Kazan (Volga region) Federal University (18 Kremlevskaya street, Kazan, Russia), sasha_ens@mail.ru
Karchevskiy Evgeniy Mikhaylovich, Doctor of physical and mathematical sciences, professor, sub-department of applied mathematics, Kazan (Volga region) Federal University (18 Kremlevskaya street, Kazan, Russia), sasha_ens@mail.ru
Nosich Aleksandr Iosifovich, Doctor of physical and mathematical sciences, professor, laboratory of micro and nanooptics, Institute of Radio Physics and Electronics of the National Academy of Sciences of Ukraine (12 Akademika Proskury street, Kharkov, Ukraine), sasha_ens@mail.ru

Index UDK

517.9

Abstract

Background. Muller boundary integral equations are widely used for theoretical and numerical analysis of various spectral problems of the mathematical theory of diffraction. They are also used for calculation of superficial own waves of homoge-neous weakly guiding dielectric waveguides without losses. The aim of the work is to develop a method of using the latter for searching of both superficial and leaky waves of such waveguides, and also to research qualitative spectral proprties.
Materials and methods. The research of qualitative spectral properties was car-ried out using the methods of the theory of regularization of problems of open waveguides’ own waves. Reduction of the initial problem to a spectral problem for the system of integral equations was carried out by the potential theory methods. The further analysis is based on the known results on isolation of characteristic values of the Fredholm holomorphic operator-function with the presence of at least one regular point in the area of its holomorphy, and on behavior of characteristic values of such operator-function as a function of non-spectral parameters.
Results. It is proved that the initial problem for the surface Helmholtz equation is equivalent to a nonlinear spectral problem for Muller boundary integral equations with a quite continuous operator. It is proved that the characteristic set of the built operator-value function may consist of only isolated points on the corresponding Riemann surface. Each characteristic value continuously depends on nonspectral pa-rameters and may occur and disappear on the boundary of this surface.
Cocnlusions. The developed technique of Muller boundary integral equations ap-plication may be successfully implemented for solving spectral problems of the the-ory of dielectric waveguides, namely for searching superficial leaky own waves, as well as for researching qualitative spectral properties.

Key words

propagation of electromagnetic waves in waveguides, eigenvalue problem, integral equations.

Download PDF
References

1. Muller C. Grundproblems der Mathematischen Theorie Elektromagnetis-cher Schwin-gungen [Grundproblems the Mathematical theory Elektromagnetis-cher vibrations]. Ber-lin: Springer, 1957, 345 p.
2. Smotrova E. I., Tsvirkun V., Gozhyk I., Lafargue C., Ulysse C., Lebental M.,
Nosich A. I. J. Opt. Soc. Am. B. 2013, vol. 30, no. 6, pp. 1732–1742.
3. Eyges L., Gianino P., Wintersteiner P. J. Opt. Soc. Am. 1979, vol. 69, no. 9, pp. 1226–1235.
4. Wang L., Cox J. A., Friedman A. J. Opt. Soc. Am. A. 1998, vol. 15, no. 1, pp. 92–100.
5. Snayder A., Lav Dzh. Teoriya opticheskikh volnovodov [Theory of optical waveguides]. Moscow: Radio i svyaz', 1987, 656 p.
6. Karchevskii E., Nosich A. Proceedings of International Conference on Mathematical Methods in Electromagnetic Theory. Dnipropetrovsk, Ukraine, 2014, pp. 39–45.
7. Kartchevski E. M., Nosich A. I., Hanson G. W. SIAM J. Appl. Math. 2005, vol. 65,
no. 6, pp. 2033–2048.
8. Dautov R. Z., Karchevskiy E. M. Metod integral'nykh uravneniy i tochnye nelokal'nye granichnye usloviya v teorii dielektricheskikh volnovodov [Method of integral equations and precise nonlocal boundary conditions in the theory of dielectric waveguides]. Kazan: Kazan. gos. un-t, 2009, 271 p.
9. Bitsadze A. V. Nekotorye klassy uravneniy v chastnykh proizvodnykh [Some equation classes in partial derivatives]. Moscow: Nauka, 1981, 448 p.
10. Kolton D., Kress R. Metody integral'nykh uravneniy v teorii rasseyaniya [Methods of integral equations in the scattering theory]. Moscow: Mir, 1987, 312 p.
11. Shestopalov Yu. V., Smirnov Yu. G., Chernokozhin E. V. Logarithmic integral equati-ons in electromagnetics. VSP, 2000, 117 p.
12. Nikiforov A. F., Uvarov V. B. Osnovy teorii spetsial'nykh funktsiy [Basic theory of spe-cial functions]. Moscow: Nauka, 1974, 303 p.
13. Il'inskiy A. S., Shestopalov Yu. V. Primenenie metodov spektral'noy teorii v zadachakh rasprostraneniya voln [Application of spectral theory methods in the wave propagation problems]. Moscow: Izd-vo MGU,1989,184 p.
14. Tikhonov A. N., Samarskiy A. A. Uravneniya matematicheskoy fiziki [Equations of ma-thematical physics]. Moscow: Izd-vo MGU, 1999, 799 p.
15. Kress R. Linear integral equations. New York: Springer-Verlag, 1999, 365 p.
16. Kato T. Teoriya vozmushcheniy lineynykh operatorov [Theory of linear operators‘ dis-turbance]. Moscow: Mir, 1972, 740 p.
17. Gokhberg I. Ts., Kreyn M. G. Uspekhi matematicheskikh nauk [Progress of mathematical sciences]. 1957, vol. 12, no. 2, pp. 44–118.
18. Steinberg S. Arch. Rat. Mech. Anal. 1968, vol. 31, no. 5, pp. 372–379.

 

Дата создания: 07.07.2015 10:14
Дата обновления: 10.07.2015 08:23